NonGaussian Dynamic Regression Models¶
Introduction¶
With NonGaussian state space models, we have the same basic setup as Gaussian state space models, but now a potentially nonGaussian measurement density. That is we are interested in problems of the form:
Usually MCMC based schemes are the right way to tackle this problem. Currently PyFlux uses BBVI for speed, but the meanfield approximation means there can be some bias in the states (although the results are generally okay for prediction). In the future, PyFlux will use a more structured approximation.
The NonGaussian dynamic regression model has the same form as a dynamic linear regression model, but with a nonGaussian measurement density.
Example¶
See the notebook at https://github.com/RJT1990/talks/blob/master/PyDataTimeSeriesTalk.ipynb and the example for nonGaussian estimation of a beta coefficient for finance. The API is from an old version here, but shows a use of this model type.
Class Description¶

class
NDynReg
(formula, data, family)¶ NonGaussian Dynamic Regression models
Parameter Type Description formula string Patsy notation specifying the regression data pd.DataFrame Contains the univariate time series family pf.Family instance The distribution for the time series, e.g pf.Normal()
Attributes

latent_variables
¶ A pf.LatentVariables() object containing information on the model latent variables, prior settings. any fitted values, starting values, and other latent variable information. When a model is fitted, this is where the latent variables are updated/stored. Please see the documentation on Latent Variables for information on attributes within this object, as well as methods for accessing the latent variable information.
Methods

adjust_prior
(index, prior)¶ Adjusts the priors for the model latent variables. The latent variables and their indices can be viewed by printing the
latent_variables
attribute attached to the model instance.Parameter Type Description index int Index of the latent variable to change prior pf.Family instance Prior distribution, e.g. pf.Normal()
Returns: void  changes the model
latent_variables
attribute

fit
(method, **kwargs)¶ Estimates latent variables for the model. User chooses an inference option and the method returns a results object, as well as updating the model’s
latent_variables
attribute.Parameter Type Description method str Inference option: e.g. ‘MH’ or ‘MLE’ See Bayesian Inference and Classical Inference sections of the documentation for the full list of inference options. Optional parameters can be entered that are relevant to the particular mode of inference chosen.
Returns: pf.Results instance with information for the estimated latent variables

plot_fit
(**kwargs)¶ Plots the fit of the model against the data. Optional arguments include figsize, the dimensions of the figure to plot.
Returns : void  shows a matplotlib plot

plot_ppc
(T, nsims)¶ Plots a histogram for a posterior predictive check with a discrepancy measure of the user’s choosing. This method only works if you have fitted using Bayesian inference.
Parameter Type Description T function Discrepancy, e.g. np.mean
ornp.max
nsims int How many simulations for the PPC Returns: void  shows a matplotlib plot

plot_predict
(h, oos_data, past_values, intervals, **kwargs)¶ Plots predictions of the model, along with intervals.
Parameter Type Description h int How many steps to forecast ahead oos_data pd.DataFrame Exogenous variables in a frame for h steps past_values int How many past datapoints to plot intervals boolean Whether to plot intervals or not To be clear, the oos_data argument should be a DataFrame in the same format as the initial dataframe used to initialize the model instance. The reason is that to predict future values, you need to specify assumptions about exogenous variables for the future. For example, if you predict h steps ahead, the method will take the h first rows from oos_data and take the values for the exogenous variables that you asked for in the patsy formula.
Optional arguments include figsize  the dimensions of the figure to plot. Please note that if you use Maximum Likelihood or Variational Inference, the intervals shown will not reflect latent variable uncertainty. Only MetropolisHastings will give you fully Bayesian prediction intervals. Bayesian intervals with variational inference are not shown because of the limitation of meanfield inference in not accounting for posterior correlations.
Returns : void  shows a matplotlib plot

plot_predict_is
(h, fit_once, fit_method, **kwargs)¶ Plots insample rolling predictions for the model. This means that the user pretends a last subsection of data is outofsample, and forecasts after each period and assesses how well they did. The user can choose whether to fit parameters once at the beginning or every time step.
Parameter Type Description h int How many previous timesteps to use fit_once boolean Whether to fit once, or every timestep fit_method str Which inference option, e.g. ‘MLE’ Optional arguments include figsize  the dimensions of the figure to plot. h is an int of how many previous steps to simulate performance on.
Returns : void  shows a matplotlib plot

plot_z
(indices, figsize)¶ Returns a plot of the latent variables and their associated uncertainty.
Parameter Type Description indices int or list Which latent variable indices to plot figsize tuple Size of the matplotlib figure Returns : void  shows a matplotlib plot

predict
(h, oos_data)¶ Returns a DataFrame of model predictions.
Parameter Type Description h int How many steps to forecast ahead oos_data pd.DataFrame Exogenous variables in a frame for h steps To be clear, the oos_data argument should be a DataFrame in the same format as the initial dataframe used to initialize the model instance. The reason is that to predict future values, you need to specify assumptions about exogenous variables for the future. For example, if you predict h steps ahead, the method will take the 5 first rows from oos_data and take the values for the exogenous variables that you specified as exogenous variables in the patsy formula.
Please note that if you use Maximum Likelihood or Variational Inference, the intervals shown will not reflect latent variable uncertainty. Only MetropolisHastings will give you fully Bayesian prediction intervals. Bayesian intervals with variational inference are not shown because of the limitation of meanfield inference in not accounting for posterior correlations.
Returns : pd.DataFrame  the model predictions

predict_is
(h, fit_once, fit_method)¶ Returns DataFrame of insample rolling predictions for the model.
Parameter Type Description h int How many previous timesteps to use fit_once boolean Whether to fit once, or every timestep fit_method str Which inference option, e.g. ‘MLE’ Returns : pd.DataFrame  the model predictions

References¶
Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press, Cambridge.
Ranganath, R., Gerrish, S., and Blei, D. M. (2014). Black box variational inference. In Artificial Intelligence and Statistics.